• Shaanxi CHENGDA Industry Furnace MAKE Co., Ltd.
    Syed Rashid Ahmed Butt
    Shaanxi Chengda Industrial Furnace Co., Ltd. completed the commissioning of electric arc furnace, the workers carefully cooperated with Chengda engineers to learn and operate the equipment, showing the deep friendship and excellent cooperation between the people of China and Pakistan.
  • Shaanxi CHENGDA Industry Furnace MAKE Co., Ltd.
    Aboubacar
    After more than 1 month of intense production and debugging, 2 sets of heat exchange flue gas settling chamber equipment has been successfully put into operation ~ All the personnel involved in the project have worked hard! ~
  • Shaanxi CHENGDA Industry Furnace MAKE Co., Ltd.
    Ji-hwan
    【 Warm congratulations 】 Shaanxi Chengda Industrial Furnace Manufacturing Company in South Korea, North Chungcheong County precious metal smelting furnace equipment installation and careful manufacturing and strict commissioning, looking forward to the future in more fields to achieve mutually beneficial win-win cooperation!
Contact Person : Du
Phone Number :  13991381852

Short-Net for Electric Arc Furnaces

Place of Origin China
Brand Name Shaanxi Chengda
Certification ISO 9001
Model Number Negotiate based on equipment processing capacity
Minimum Order Quantity 1 set
Price The price will be negotiated based on the technical requirements and supply scope of Party A
Packaging Details Discuss according to the specific requirements of Party A
Delivery Time 10~15 days
Payment Terms L/C,T/T,Western Union
Supply Ability Complete production supply chain, supply on time, and meet quality standards

Contact me for free samples and coupons.

WhatsApp:0086 18588475571

WeChat: 0086 18588475571

Skype: sales10@aixton.com

If you have any concern, we provide 24-hour online help.

x
Product Details
Highlight

short-net electric arc furnace spare

,

electric arc furnace replacement net

,

furnace short-net replacement part

You can tick the products you need and communicate with us in the message board.
Leave a Message
Product Description
As a core high-current conduction component in the main circuit of electric arc furnaces (EAF), the short network undertakes the critical task of transmitting electrical energy from the secondary side of the transformer to the electrodes. Its performance directly impacts the smelting efficiency, energy consumption, and operational stability of the EAF. Below is a detailed product introduction:

1. Core Definition & Key Functions

  • Definition: The short network refers to the general term for secondary conductors from the low-voltage outlet terminal of the EAF transformer to the end of the graphite electrode. In practical applications, it often specifically refers to the line section from the compensator to the water-cooled cable, divided into busbar-type and copper tube-type. Among them, the water-cooled copper tube type has become the mainstream development direction due to its copper material saving and excellent cooling effect.
  • Key Functions: It not only serves as an electrical energy transmission channel but also controls the symmetrical distribution of electric arcs, improving arc stability and energy density to concentrate thermal effects. Meanwhile, it can withstand the short-term extreme thermal load of electrodes, ensuring the EAF stably generates high temperatures for scrap melting and other operations. Additionally, a reasonable short network design can balance the three-phase reactance and reduce energy consumption.

2. Core Components

Component Function Description
Compensator Mostly air-cooled or water-cooled, connecting the transformer outlet to the conductive copper tube. It compensates for length expansion and contraction caused by temperature changes, ensuring connection stability.
Conductive Copper Tube/Busbar Core conductive component. Each phase is usually equipped with 2-4 U-shaped tubes. The section connected to the transformer is arranged according to the transformer outlet form, and the section connected to the water-cooled cable is mostly arranged in an equilateral triangle. The copper tube type can cooperate with the water cooling system to reduce its own temperature.
Water-Cooled Cable A special water-through cable connecting the conductive copper tube to the conductive cross arm. Models such as SLDL series are adapted to EAFs of different capacities, meeting the conductive and cooling requirements of dynamic and static connection parts.
Stainless Steel Bracket & Insulator The bracket is made of non-magnetic stainless steel to avoid electromagnetic loss. It is matched with phenolic glass cloth plate insulators, and the conductors are fixed with stainless steel bolts to ensure electrical insulation and mechanical support.
Forged Copper Shoe Can be connected in series with the short network to form a closed cooling water circuit, while strengthening the conductive connection between the electrode and the short network, improving current conduction efficiency.

3. Key Technical Parameters

The parameters of short networks for EAFs of different capacities vary significantly. Below are reference values for some mainstream specifications:
Rated EAF Capacity Rated Transformer Capacity Secondary Current Electrode Diameter Water-Cooled Cable Model Impedance Unbalance Factor
6t 3.15MVA 9920A 300mm SLDL2400 ≤5%
12t 5MVA 14400A 350mm SLDL3600 ≤5%
15t 6.3MVA 16788A 350mm SLDL4000 ≤5%
20t 16MVA 36344A 400mm SLDL4400 ≤5%

4. Product Features

  • High-Current Adaptability: Capable of carrying ultra-large currents of tens of thousands of amperes. With the water cooling system, the current density is several times higher than that of traditional structures, while the self-weight is significantly reduced, adapting to the high-intensity smelting power supply requirements of EAFs.
  • Low-Loss Design: The copper tube and copper shoe are connected in series to form a closed-loop cooling water circuit, quickly dissipating heat from the conductor and reducing electrical energy loss caused by high temperatures. Some flat reactor-type short networks reduce mutual inductance electromotive force and conductor resistance by optimizing electrode arrangement, further saving electrical energy.
  • Harsh Environment Resistance: Components are made of high-temperature and corrosion-resistant materials, enabling stable operation in the high-temperature and high-conductive dust environment during EAF smelting. The structural design also considers mechanical strength to resist vibration and impact during smelting.
  • Strong Compatibility: Can be customized with corresponding structures and parameters according to different equipment types such as EAFs and submerged arc furnaces, as well as different smelting scenarios such as nickel-iron furnaces and industrial silicon furnaces, with strong adaptability.

5. Application Scenarios

Widely used in metallurgy and related industrial fields, such as scrap secondary refining in EAF steelmaking, melt flow control in the casting industry to ensure casting quality, and various metal smelting operations in metal processing. It is also suitable for submerged arc furnaces, calcium carbide furnaces, yellow phosphorus furnaces and other equipment, used in the smelting production of nickel-iron, ferrosilicon, calcium carbide and other products.