All Products
-
Syed Rashid Ahmed ButtShaanxi Chengda Industrial Furnace Co., Ltd. completed the commissioning of electric arc furnace, the workers carefully cooperated with Chengda engineers to learn and operate the equipment, showing the deep friendship and excellent cooperation between the people of China and Pakistan. -
AboubacarAfter more than 1 month of intense production and debugging, 2 sets of heat exchange flue gas settling chamber equipment has been successfully put into operation ~ All the personnel involved in the project have worked hard! ~ -
Ji-hwan【 Warm congratulations 】 Shaanxi Chengda Industrial Furnace Manufacturing Company in South Korea, North Chungcheong County precious metal smelting furnace equipment installation and careful manufacturing and strict commissioning, looking forward to the future in more fields to achieve mutually beneficial win-win cooperation!
Contact Person :
Du
Phone Number :
13991381852
Six-electrode large DC submerged arc furnace with World's leading technology/invention patents
| Place of Origin | China |
|---|---|
| Brand Name | Shaanxi Chengda |
| Certification | ISO 9001 |
| Model Number | Negotiate based on equipment processing capacity |
| Minimum Order Quantity | 1 unit |
| Price | The price will be negotiated based on the technical requirements and supply scope of Party A |
| Packaging Details | Discuss according to the specific requirements of Party A |
| Delivery Time | 2 months |
| Payment Terms | L/C,T/T,Western Union |
| Supply Ability | Complete production supply chain, supply on time, and meet quality standards |
Contact me for free samples and coupons.
Whatsapp:0086 18588475571
Wechat: 0086 18588475571
Skype: sales10@aixton.com
If you have any concern, we provide 24-hour online help.
xProduct Details
| Highlight | six-electrode DC submerged arc furnace,large steelmaking arc furnace,submerged arc furnace with patents |
||
|---|---|---|---|
Product Description
Six-Electrode Large DC Submerged Arc Furnace
The six-electrode large DC submerged arc furnace is a high-efficiency, large-capacity metallurgical smelting device optimized for large-scale ferroalloy, industrial silicon, and calcium carbide production. Building on the advantages of four-electrode furnaces, it adopts a hexagonal electrode layout to achieve more uniform current distribution, stronger electromagnetic stirring, and higher smelting efficiency, making it ideal for ultra-large-scale smelting projects (rated power ≥80MVA).
1. Basic Structure & Working Principle
Core Components
| System | Key Components & Specifications |
|---|---|
| Electrode System | 6 graphite/self-baking electrodes arranged in a regular hexagon; diameter 1000–1400mm; independent lifting & current adjustment mechanism for each electrode |
| Power Supply System | Thyristor rectifier transformer (split-type design: 2–3 rectifier cabinets in parallel); DC reactor; short-net with low-resistance copper busbar; rated power 80–150MVA |
| Furnace Body Structure | Steel shell + multi-layer refractory lining (corundum-magnesia brick + carbon ramming mass); conductive furnace bottom anode (graphite-carbon brick + copper conductive layer) to bear high current density (≤5A/cm²); furnace capacity 150–500t |
| Auxiliary Systems | High-flow cooling water system; PLC + DCS intelligent control system; closed-loop dust removal system; automatic quantitative feeding system |
Working Principle
DC current is output from the rectifier system and distributed to the 6 top electrodes (cathodes). The arc is ignited between the electrodes and the charge, and the current flows through the submerged arc and molten pool to the conductive furnace bottom anode, forming a stable main circuit. The hexagonal electrode layout creates a symmetric electromagnetic field, driving the molten pool to perform high-intensity circular stirring. This accelerates the reduction reaction of ores and ensures uniform temperature and composition of the melt.
2. Key Technical Parameters (Typical Ultra-Large Models: 80–150MVA)
| Parameter Index | Specification Range |
|---|---|
| Rated Power | 80–150MVA |
| Total Rated DC Current | 60–125kA (10–21kA per electrode, independently adjustable) |
| DC Input Voltage | 1000–1500V |
| Single Electrode Diameter | 1000–1400mm |
| Furnace Nominal Capacity | 150–500t (batch smelting for ferroalloy) |
| Smelting Temperature | 1900–2300℃ |
| Power Consumption | 3600–4500kWh/t (industrial silicon); 2800–3500kWh/t (high-carbon ferrochrome) |
| Electrode Consumption | 0.4–0.8kg/t (20% lower than four-electrode DC furnaces) |
| Cooling Water System | Total flow rate 800–1500m³/h; water pressure 0.45–0.65MPa; conductivity ≤50μS/cm |
| Dust Removal Efficiency | ≥99.8%; emission concentration ≤5mg/m³ |
| Electromagnetic Stirring Intensity | 1.2–1.8T (magnetic induction intensity) |
| Lining Service Life | 3–5 years (for ferroalloy smelting) |
3. Core Advantages vs. Four-Electrode DC Submerged Arc Furnaces
| Advantage | Detailed Description |
|---|---|
| Uniform Current & Temperature Distribution | Hexagonal electrode layout eliminates local hot spots in the molten pool; temperature difference within the furnace ≤50℃, ensuring consistent product composition |
| Higher Power Density & Smelting Efficiency | Supports ultra-high power input (up to 150MVA); smelting cycle shortened by 15–20% compared to four-electrode furnaces; hourly output increased by 20–30% |
| Lower Energy & Electrode Consumption | Symmetric electromagnetic field reduces arc energy loss; power consumption reduced by 8–12%; independent electrode current control avoids over-burning of single electrodes, cutting consumption by 20% |
| Stronger System Stability | Split-type power supply design: if one rectifier cabinet fails, the others can continue operating (load rate ≥60%); low voltage fluctuation (≤±5%), friendly to the power grid |
| Better Scalability | Modular electrode and power supply design allows step-by-step capacity expansion (e.g., upgrading from 80MVA to 150MVA without replacing the furnace body) |
4. Application Scenarios
- Ultra-Large Ferroalloy Production
Smelting high-carbon ferrochrome, ferrosilicon, silicomanganese, and ferrotungsten; suitable for projects with annual output ≥100,000 tons.
- High-Purity Industrial Silicon Smelting
Produces silicon with purity ≥99.9% for semiconductor and photovoltaic industries; stable temperature field reduces impurity content.
- Large-Scale Calcium Carbide Manufacturing
Single-furnace calcium carbide output ≥200t/batch; carbide content ≥85%; energy consumption reduced by 10–15% compared to traditional furnaces.
- Rare Metal Ore Smelting
Reduction smelting of nickel-cobalt ore, tantalum-niobium ore, and vanadium-titanium magnetite; high alloy element recovery rate (≥97%).
5. Operation Key Points & Maintenance
Operation Precautions
- Electrode Insertion Depth Control: Maintain 1.5–2.0m insertion depth per electrode to ensure submerged arc burning; avoid arc exposure (causes energy loss and dust emission).
- Current Balance Adjustment: Keep the current difference between electrodes ≤5% via the DCS system; prevent overload of individual electrodes.
- Slag System Optimization: Adopt high-basicity slag (R=2.0–2.5) to improve desulfurization rate (≥90%) and reduce lining erosion.
Maintenance Focus
- Electrode Maintenance: Regularly check electrode joints for tightness; replace electrodes when the residual length is ≤500mm to avoid breakage.
- Furnace Bottom Anode Inspection: Test the conductivity of the furnace bottom every 3 months; repair carbon ramming mass in time if cracks are found.
- Cooling System Monitoring: Real-time monitor water flow and temperature difference of electrodes and furnace body; shut down immediately if water flow is insufficient to prevent burnout.
6. Technical Comparison with Four-Electrode DC Submerged Arc Furnaces
| Feature | Six-Electrode Large DC Submerged Arc Furnace | Four-Electrode DC Submerged Arc Furnace |
|---|---|---|
| Electrode Layout | Regular hexagon (symmetric) | Square (asymmetric local current) |
| Max Rated Power | 150MVA | 63MVA |
| Temperature Uniformity | ≤50℃ difference | 80–120℃ difference |
| Power Consumption | 3600–4500kWh/t | 3800–4800kWh/t |
| Hourly Output | 20–30% higher | Standard output |
| Retrofit Cost | High (new furnace body required) | Medium (retrofit from AC furnaces feasible) |
| Applicable Scale | Ultra-large (≥100,000t/year) | Medium-large (30,000–100,000t/year) |
7. Development Trends
- Intelligent Smelting: Integrate AI and IoT technologies to realize automatic adjustment of electrode current, feeding speed, and slag discharge; achieve unmanned on-site operation.
- Energy Recycling: Combine waste heat power generation systems to recover flue gas heat (temperature ≥1200℃), reducing overall energy consumption by 20–25%.
- Green Smelting: Adopt closed-loop furnace body design + dry dust removal to achieve zero wastewater discharge and ultra-low emission of pollutants.
Recommended Products

